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ABSTRACT 

A generalized Ohm’s law i s  derived for ionized 
gas in  the presence of electrical and magnetic fields with 
arbitrary orientations. Two different methods are used in 
the analysis but the results are in complete agreement. It 
i s  found that in general when the magnetic field and the 
electrical field are neither parallel nor perpendicular, an 
additional current normal to both the direct current and the 
Hall current i s  theoretically observed. 

1. INTRODUCTION 

It h a s  been realized for a long time that only under certain special  conditions may the 

classical  Ohm’s law -which states that the current is proportional and parallel to the electrical 

field, or in mathematical t e r n s  simply 1 = D E  - be used in the study of ionized gas. For the 

generalization of this  c lass ical  Ohm’s law, contributions have been given by many authors, for 

example, Chapman, Cowling, Spitzer, and Finkelnburg and Maecker (Ref. 1-4). Generalization may 

be generally considered in two different directions; one i s  to extend the definition of E as the 

effective electrical field which may include the field generated by the diffusion phenomena due to 

pressure gradient and concentration gradient and the other is to generalize the classical  Ohm’s 

law in such a way that the Hall effect may be taken into account. In Ref. 1, a fairly general 

expression of electrical  current is derived on the bas i s  of kinetic theory. However, only two 

special  ca ses  are discussed in detail: in one case  the magnetic field B is assumed to be parallel 

to  E ,  and in the other B is perpendicular to E. In Ref. 2, Cowling has derived a generalized 

Ohm’s law in an implicit fonn 

I +  W T - ~ J  x B = u E ’  ( 1) 

based on a much simpler theory. However, again only two special  c a s e s  are discussed: B [ I  E and 

B 1 E. Spitzer’s expression of Ohm’s law (Ref. 3) takes  into account the unsteady effect, and h i s  
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result agrees  with Cowling’s in the steady-state case. T h e  result  derived by Finkelnburg and 

Maecker (Ref. 4) also expresses  the electrical current in an implicit form, namely 

1 
enc 

grad pe  - -grad 1 
pi 

x H )  - - ( J  x H)  + 

The purpose of the present paper i s  to derive a more general and explicit expression of 

the electrical current 1. Two different methods will be used. The first  method will be shown in 

Section 11, which follows the technique used in Ref. 1 but will remove the assumption that B i s  

perpendicular to E .  The result gives some novel features besides  the classical  Hall effect. The 

second method, which i s  based on the irreversible process  of thermodynamics, will be demonstrated 

in Section 111. The final result i s  obtained in a form different from that given in Ref. 4 but agrees 

with what i s  shown i n  Section 11. This  explicit expression of current density J may be considered 

a s  a generalized Ohm’s law which takes  the fonn 
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II. GENERALIZATION OF THE CHAPMAN - COWLING 
DISCUSSION OF CURRENT DENSITY 

Considering an ionized gas  of two charged species,  Chapman and Cowling (Ref. 1) dis- 

cussed the solution of the Boltzmann equation to the second approximation. If f l  and f2 are the 
distribution functions of the two species, then f l  and f2 satisfy 

where Jl(ff,) i s  the collision integral which describes the change of f l  due to the interaction 

between particles of spec ies  1 and J12(f,f2) i s  due to the interaction between particles of spec ies  

1 and 2. The integrals J 2 ( f f 2 )  and J2,(f2fl) are similarly defined for f2. Postulat ing that the 

distribution function f l  may be written in the form f l  = fro) + fi'), where 

approximation which is much smaller than the first approximation fro), two successive approxi- 

mations may be obtained from Eq. (3). 

is a second 

a f p  e l  

ml 

(0) (0)) - J ( (0) (0)) 
- V 1 x B . - -  - - J , ( f  f, 12 f l  f2 
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The  notations used hereafter are mostly adopted from Ref. 1, except the velocit ies and 

the fields. V, denotes the peculiar velocity and v the velocity of the mixture (in Chapman- 

Cowling notation V, = C, and v = eo). The differential operator D o / D t  i s  defined in Ref. 1, p. 113. 

The solution of fro) may be found as 

2 
-m ,V,2/2K T 

where n l  and T are the number density and temperature of the first  gas. Now, rewriting 

fl') @\') and using the relations 

= 

aV 
+ n l  __ = o  Don1 

D t  ar 

Eq. (4) may be put in the form 

1 a T  n 

T a r  n l  

(7) 

(8) 
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where d12 is a vector quantity which i s  defined as 

nl 
- -  - 

nl 

n l  + n 2  n n10 = 

and the operators I ,  and I,, are defined in Ref. 1, p. 85. An equation similar to Eq. (11) may be 
derived for the second gas simply by changing the sign of d,, .  Thus 

- ng12 (ai’)) - n l n Z ~ 2 1  (ail)) + a q  1 

According to Chapman and Cowling, 

(12) 
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- 
The quantities A, E and D are to be determined. Since the purpose of the present discussion is to 

understand the electrical current density due to diffusion1, only the vector D shall be studied. In 

general Dl is a function of V, and 6 .  It i s  argued in Ref. 1 that s ince  only the vector product of 

V x 6 appears in the mechanical equations, 0, can only depend upon V,, Vl x B ,  (V, x B )  x B ,  
etc. Therefore, i t  is justif iable to write 

D, = D: V, + 0:' (V, x 6)  + D;"(V, x B)  x 6 

where the unknown coefficients 0:. DI1, and D:" are functions of the magnitude of V, and B .  To 
discuss  the diffusion phenomena only, it i s  possible  to write 

1 = -nd12 - [D:V1 + D:'(V, x 6)  + D:"(V x 6) x 61 

But 

(V1 x B) x B = B ( B  * V1) - B2V1 

There i s ,  therefore, no loss of generality, if the expression i s  rewritten 

SimilarIy 

d1) 2 = -nd12 - [DiV, + Di'(V2 x 6) + D t " B ( 6  * V2)I ( 16) 

With (15) and (16), the  current density J ( ' )  may be expressed in  terms of a\') and a&') as follows 

~ ( 1 )  = e l  J f i O )  Q \ ~ ) v , ~ v ,  + e J fro) ai" v2 d v1 

= - - n  [ L ' d , ,  + L"B x d , ,  + L"'B(B d12)I 

For the t i m e  being, the thermal diffusior will be ignored. 
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where 

Substituting Eq. (151, (16), and (17) into the equation 

which is the reduced form of Eq. ( l l ) ,  and equating the terns having coefficients d,,, 5 x d,, 

and 5 ( B  d,,), three equations are obtained as follows: 

I . 
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velocity space. Thus 

VldVl - - e l  B 2 J f i o ) f b a  

m l  

Adding Eq. (27) to (26) yie Is 

because 

P P 

d d 
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Similarly for the second species: 

+ n2n1Z21(DiV2 + DiV$ ( 22) 

Following the same approximation used by Chapman and Cowling in discussing the 

special case  that B i s  perpendicular to E ,  the first approximation i s  

D ~ V ~  = E a(') 

D2 2 
I I y  = E'  

0 2  

O 2  I D ~ V ,  = E a(') 

DIIV = E '  JO) 

0 1  

1 1  0 1  
( 25) 

where the vectors a1 and a2 have been originally introduced in Ref. 1, and in first  approximation 

a(O) 1 .  and aio) may be defined a s  

In order to determine the unknown coefficients eo, E ; ,  and E:,  Eq. (19) is first  multiplied by 

a?', and Eq. (22) by aio), and in t ega ted  with respect to V, and V2 respectively throughout the 

8 
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and 

n l n 2  K T E ,  3 

2 
- = n  

Following Chapman and Cowlii 

(D12) 1 

Then Eq. (28) becomes 

By adopting the similar technique, it i s  readily shown from Eq. (20) - (24) that 

( 30) 

Substituting E ;  = + B - l € O w r  into Eq. (29) and solving for eo: 

I 
i 

(32) 

2The o in the following is defined slightly different from that defined in the Reference because, 
in general, [e lrn2p2 + e2rn lp11  <o. 

10 
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Hence E ;  and €;may be solved from Eq. (30) and (31) immediately: 

Also, 

+ u2r2B-28(8  - d12) . a\o)] 

Correspondingly 

(33) 

(34) 

Hence 

L J 

11 
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If an effective electrical field E ' is introduced such that 

and a conductivity c is defined as follows 

n l n l  

Pmlm2 
u =  ( e l m 2  - e2m112' 

then Eq. (27) may be rewritten a s  

Equation (38) is a generalized result, whereas the discussion given by Chapman and Cowling 

assumed that 6 i s  perpendicular to E '. 

12 
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111. AN ALTERNATIVE DERIVATION FROM THE THERMODYNAMICS 
OF THE IRREVERSIBLE PROCESS 

The previous result  i s  based on classical  kinetic theory and the method of solution was 

originally devised by Chapman and Enskog. An attempt is made in the present Section to find an 

alternative derivation of what h a s  been previously obtained. The  purpose of doing this  is to s e e  

whether these two methods are fundamentally consistent. If they are consistent, the two different 

approaches should yield the same result or at l ea s t  the resul ts  ought to be compatible from the 

physical or mathematical point of view. 

I t  is a straightforward matter to obtain the energy equation of a g a s  mixture from the 

‘Maxwell-Boltzmann equation of transfer (Ref. 5); thus: 

S 

1 f i -  - (E + < v i >  x 8)  = - d i v Q + T g r a d v +  
Dt i = l  mi 

where 

S 

Q = 1 pi < eiVi = heat flux 
i = 1  

e i  = specif ic  internal energy 

Vi = peculiar velocity of particle of species  i 

h = the specific enthalpy of the mixture 

- - 
7 = pi vipvi > = viscous s t r e s s  tensor3 

i = 1  

< vi > = averaged velocity of the particles of species  i 

fi = pi <Vi  > = diffusion flux of species  i 

Since the main purpose of the present discussion is to compare the result  obtained by irreversible 

thermodynamics to that obtained previously, the discussion will be restricted to the similar 

3The notation Vi0 Vi i s  defined in Ref .  1, p. 18. 
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physical conditions that the gas  contains only two spec ies  and that no chemical reaction is taking 

place. Then, on further application of the thermodynamic law, 

2 
1 

T d s  = dh - - d p  - 
P 

p i d c i  
i = l  

where 

P i  

$ P  
c .  = -- = relative concentration of spec ies  i 

p i  = chemical potential of spec ies  i 

s = specific entropy of the g a s  mixture 

the energy equation (39) may be written as 

(40) 

However, 

D c i  

Dt  
p ~ = - div fi  

thus  

2 

p i  
p ~ D s  = - div i = l  -Q.- grad T - - f i -  [Tgrad  - 

Q - 2 p i f i  

D t  T T 2  T i = l  T 

14 



Jet Propulsion Laboratory Technical Report No. 32-23 

Now, according to the theory of irreversible thermodynamics (Ref. 6) ,  the phenomenological 

equations can be established in the following 

"2 grad T 
+ I , ,  [ T  grad ($) - ~ ( E  + < v 2 >  x 6) + I,, ~- 

m 2  I T  

grad T + I , ,  grad ($) - ~ ( E  + < v , >  x 6) + I,, -~ I T  m 2  

Q = I,, 1 e l  
T grad ($) - ~ ( E  + < v i >  x B) 

ml 

grad T 
+ I33 ~ 1 T 

e2  

m 2  
+ '32 [ T  grad ($) - ~ ( E  + <v,> x 6) 

Since according to the definition of fi 

f ,  + f2 = 0 

then 

4 1  = -121 

122 = -112 

I13 = - I 2 3  
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In general, the Onsager's reciprocal relation must be imposed in  such a way that 

I12(B) = 12,(-B) 

I 1 3 ( B )  = I 3 1 ( - B )  

123  (6) = I 3 2  ( - B )  

However, s ince I,, and I,, should be even functions of B ,  from Eq. (46) and (47), i t  i s  

concluded that  I,, and I,, should also be even functions of B .  Therefore, 

I 12 (B)  = I21(-6) = I2l(B) 

In the following discussion, s ince the thermal diffusion will not be considered, more 

detailed discussion of the phenomenological coefficients will be unnecessary. Thus, the diffusion 

flux f , may be written as 

1 )  
f, = 1 , p p  + ($ - $) E + (~ < v 2 >  - ~ < v  > x B 

e l  

m 2  ml 

4 where p = p ,  - p,.  If the diffusion coefficients are defined in such a way that 

( 49) 

+ 3 (2 < v 2 >  - ~ e l  < V 1 j X  .] 
p m 2  m l  

the following relations may be deduced: 

= - P  

41t will be shown later that the diffusion coefficient D,, defined here agrees with that appearing 
in the previous section. 

16 
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because 

where c = cl. Again, s ince  for perfect gas  p = [c/ml + (1 - c ) / m 2 ]  pKT where K = Boltzmann’s 

constant, the following relations are obtained: 

Hence 

17 
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Now, if the part concerning ordinary diffusion is rewritten in terms of the gradient of the ratio 

n l / n  (or nlO) ,  then 

or 

e l  e 2  -=[(--- PP m l  m 2  

Here i t  may be seen that the diffusion coefficient D 1 2  is  the same as that used in Ref. 1 

(p. 144). Again, s ince 

( E  + v x  B)  + (T e l  + 2) f lx B 
m 2 P 2  

Equation (55) may thus be written as 
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Den0 tin g 

Eq. (57 becomes 

( m Z - m l ) n l n 2  

nP P 
0, 

n2mlm2 
f, + 0 7 B - l f 1  x B = - 

P 

But, f, i s  related to J through the equation 

Thus, multiplying all terns in Eq. (58) by ( e l / m l  - e2/mz) and defining 

n l n 2 n  

p2 KT 
c T =  ~ ( e l m 2  - e2m1)'D12 

Eq. (58) may be written in the following form: 

19 
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Using the definition of E ' given in the previous section, 

J + ~ 7 B - l . l  x B = o E '  

Evidently, the solution of J may be verified to be 

(60) 

which agrees with what has  been obtained in Section 11. 

20 
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IV. CONCLUSIONS 

It  should be pointed out again that the result obtained in the previous discussions 

manifests only an approximate form of the actual current density, because the analysis  has  been 

idealized by many imposed assumptions which simplify considerably both the mathematical task 

and the physical complexity of the problem. For instance, the investigation is based on classical  

kinetic theory, in which the collision mechanism is considered to be binary and the coulomb 

interkction is ignored. These simplifications may cause certain errors; the qualitative picture of 

the result, however, i s  believed sti l l  significant. 

I 

The generalized Ohm’s law obtained in previous discussions must be understood to be 

independent of thermoelectrical effect because the temperature gradient is postulated to be 

negligible in the previ ous analyses. Therefore, the so-called Ettingshausen and Nernst effects 

are not included. Further extension of the discussion along this line should not be very difficult. 

The generalized Ohm’s law jus t  mentioned reveals one interesting feature which may be 

stated in the following. If three unit vectors i , ,  i 2  and i3 are designated in three orthogonal 

directions E ,  (6 x €) and E x (6 x €) respectively and 7 is denoted as the angle between 6 

and E ,  then the current density J may be expressed as 

I = J , i ,  + J 2 i 2  + J 3 i 3  

where 

J2 is the generalized Hall current. The Hall conductivity is seen to be a function of the  
besides  w and ~ ( 7  is the angle between the vectors B and E) .  It is interesting to note angle 

21 
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that J3 vanishes in  the c a s e  6 i s  either parallel or perpendicular to E ,  which are the si tuations 

customarily considered in the existing literature. 

Finally, i t  should be remarked that i t  i s  not surprising to obtain agreement between the 

two methods demonstrated in Sections I1 and IJJ s ince the fundamental assumptions involved in 

these methods are equivalent. For example, in Section I1 the classical  Boltzmann equation in 

kinetic theory i s  used  without considering the coulomb interactions; in  Section 111, the  same 

assumption i s  implicitly employed when the derivatives ( a p / a p ) , ,  T, (ap/ac)p, etc.  are eval- 

uated based on the perfect g a s  condition. Again, in Section 11, discussion of the solution i s ,  up 

to the second approximation, based on the Chapman-Enskog technique in which the distribution 

functions of the electrons and ions are assumed to be slightly disturbed from the Maxwellian 

distributions. T h i s  is evidently consistent with the approximations involved in the establishment 

of the l inear phenomenological relations in the theory of irreversible thermodynamics. 
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